National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Integration of phase change materials in building structures
Klubal, Tomáš ; Šťastník, Stanislav (referee) ; Solař,, Jaroslav (referee) ; Ostrý, Milan (advisor)
The thesis deals with the integration of phase change materials (PCMs) into building structures. The basic requirement is improved thermal stability during the summer season without using an air conditioner. This can be achieved by increasing the thermal storage capacity of the building structures. If the thermal capacity cannot be increased on the level of weight, phase change materials can be used. These materials are capable of storing latent heat and thus increasing the thermal storage capacity of the building. In the thesis the phase change materials were investigated in a thermal incubator by thermal analysis and, above all, in full-scale experiments using comparative measurements. The comparative measurements were carried out in two attic rooms at the Faculty of Civil Engineering, Brno University of Technology, where in one was used as a reference and the other for the experiment. Manufactured heat storage panels were installed in the experimental room. These panels are composed of a base plate; the capillary tubes placed on it are coated with modified plaster. The gypsum plaster is modified with micro-capsules paraffin for improving the thermal storage capacity. This system is connected to a thermal air-water pump, by which the storage panels can be additionally cooled or heated. In the experimental measurements, different operating modes were investigated and their effect on the indoor environment was evaluated. Thermal storage in PCMs dampens the temperature amplitude in the building during the summer season and, at the same time, allows the stored heat to be discharged during the night. Moreover, the time interval of withdrawing electric energy from the supply mains is much shorter than in the case of air conditioning. A conventional air conditioner must operate simultaneously with the thermal load, i.e. at the time of peak consumption of electric energy. Thanks to the set regimes, the installed system is capable of responding to external thermal condit
Material properties research for use in high-temperature solar thermal storage tank
Šot, František ; Vala, Jiří (referee) ; TROJAN,, Karel (referee) ; Steuer,, Radek (referee) ; Šťastník, Stanislav (advisor)
The use of thermal storage energy, using phase change materials appears to be an effective way to store thermal energy storage with the benefits of the high amount of energy while maintaining isothermal nature of the process. PCM methods are used in latent thermal storage systems for heat pumps, as well as in solar engineering or for temperature control in spacecraft. The past decade has extended these principles for cooling and heating in the building. There are a number of PCM systems, which operate over a wide temperature range, are used in various applications. This document includes a brief overview of the development and analysis of available thermal storage working mainly on the principle of PCM.
Material properties research for use in high-temperature solar thermal storage tank
Šot, František ; Vala, Jiří (referee) ; TROJAN,, Karel (referee) ; Steuer,, Radek (referee) ; Šťastník, Stanislav (advisor)
The use of thermal storage energy, using phase change materials appears to be an effective way to store thermal energy storage with the benefits of the high amount of energy while maintaining isothermal nature of the process. PCM methods are used in latent thermal storage systems for heat pumps, as well as in solar engineering or for temperature control in spacecraft. The past decade has extended these principles for cooling and heating in the building. There are a number of PCM systems, which operate over a wide temperature range, are used in various applications. This document includes a brief overview of the development and analysis of available thermal storage working mainly on the principle of PCM.
Integration of phase change materials in building structures
Klubal, Tomáš ; Šťastník, Stanislav (referee) ; Solař,, Jaroslav (referee) ; Ostrý, Milan (advisor)
The thesis deals with the integration of phase change materials (PCMs) into building structures. The basic requirement is improved thermal stability during the summer season without using an air conditioner. This can be achieved by increasing the thermal storage capacity of the building structures. If the thermal capacity cannot be increased on the level of weight, phase change materials can be used. These materials are capable of storing latent heat and thus increasing the thermal storage capacity of the building. In the thesis the phase change materials were investigated in a thermal incubator by thermal analysis and, above all, in full-scale experiments using comparative measurements. The comparative measurements were carried out in two attic rooms at the Faculty of Civil Engineering, Brno University of Technology, where in one was used as a reference and the other for the experiment. Manufactured heat storage panels were installed in the experimental room. These panels are composed of a base plate; the capillary tubes placed on it are coated with modified plaster. The gypsum plaster is modified with micro-capsules paraffin for improving the thermal storage capacity. This system is connected to a thermal air-water pump, by which the storage panels can be additionally cooled or heated. In the experimental measurements, different operating modes were investigated and their effect on the indoor environment was evaluated. Thermal storage in PCMs dampens the temperature amplitude in the building during the summer season and, at the same time, allows the stored heat to be discharged during the night. Moreover, the time interval of withdrawing electric energy from the supply mains is much shorter than in the case of air conditioning. A conventional air conditioner must operate simultaneously with the thermal load, i.e. at the time of peak consumption of electric energy. Thanks to the set regimes, the installed system is capable of responding to external thermal condit

Interested in being notified about new results for this query?
Subscribe to the RSS feed.